Scientists develop 'mini-brains' to help robots recognise pain


Monday, 19 October, 2020

Scientists develop 'mini-brains' to help robots recognise pain

Using a brain-inspired approach, scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a way for robots to have the artificial intelligence (AI) to recognise pain and to self-repair when damaged.

The system has AI-enabled sensor nodes to process and respond to ‘pain’ arising from pressure exerted by a physical force. The system also allows the robot to detect and repair its own damage when lightly ‘injured’, without the need for human intervention.

Currently, robots use a network of sensors to generate information about their immediate environment. For example, a disaster rescue robot uses camera and microphone sensors to locate a survivor under debris and then pulls the person out with guidance from touch sensors on its arms. A factory robot working on an assembly line uses vision to guide its arm to the right location and touch sensors to determine if the object is slipping when picked up.

Today’s sensors typically do not process information but send it to a single large, powerful, central processing unit where learning occurs. As a result, existing robots are usually heavily wired, which results in delayed response times. They are also susceptible to damage that will require maintenance and repair, which can be long and costly.

The new NTU approach embeds AI into the network of sensor nodes, connected to multiple small, less-powerful, processing units that act like ‘mini-brains’ distributed on the robotic skin. This means learning happens locally and the wiring requirements and response time for the robot are reduced five to ten times compared to conventional robots, say the scientists.

Combining the system with a type of self-healing ion gel material means that the robots, when damaged, can recover their mechanical functions without human intervention.

The breakthrough research by the NTU scientists was published in the peer-reviewed scientific journal Nature Communications in August.

“For robots to work together with humans one day, one concern is how to ensure they will interact safely with us,” said co-lead author of the study Associate Professor Arindam Basu from the School of Electrical & Electronic Engineering. “For that reason, scientists around the world have been finding ways to bring a sense of awareness to robots, such as being able to ‘feel’ pain, to react to it and to withstand harsh operating conditions. However, the complexity of putting together the multitude of sensors required and the resultant fragility of such a system is a major barrier for widespread adoption.”

Basu, who is a neuromorphic computing expert, added: “Our work has demonstrated the feasibility of a robotic system that is capable of processing information efficiently with minimal wiring and circuits. By reducing the number of electronic components required, our system should become affordable and scalable. This will help accelerate the adoption of a new generation of robots in the marketplace.”

Robust system enables ‘injured’ robot to self-repair

To teach the robot how to recognise pain and learn damaging stimuli, the research team fashioned memtransistors, which are ‘brain-like’ electronic devices capable of memory and information processing, as artificial pain receptors and synapses.

Through lab experiments, the research team demonstrated how the robot was able to learn to respond to injury in real time. They also showed that the robot continued to respond to pressure even after damage, proving the robustness of the system.

When ‘injured’ with a cut from a sharp object, the robot quickly loses mechanical function. But the molecules in the self-healing ion gel begin to interact, causing the robot to ‘stitch’ its ‘wound’ together and to restore its function while maintaining high responsiveness.

“The self-healing properties of these novel devices help the robotic system to repeatedly stitch itself together when ‘injured’ with a cut or scratch, even at room temperature,” said first author of the study, Rohit Abraham John, a Research Fellow at the School of Materials Science & Engineering. “This mimics how our biological system works, much like the way human skin heals on its own after a cut.

“In our tests, our robot can ‘survive’ and respond to unintentional mechanical damage arising from minor injuries such as scratches and bumps, while continuing to work effectively. If such a system were used with robots in real-world settings, it could contribute to savings in maintenance.”

Building on their previous body of work on neuromorphic electronics such as using light-activated devices to recognise objects, the NTU research team is now looking to collaborate with industry partners and government research labs to enhance their system for larger scale application.

Reference:

Rohit AJ, Tiwari N, et al 2020, ‘Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics’, Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-17870-6.

Related News

Octopus inspires new gripper mechanism for robots

A new robotic suction cup that can grasp rough, curved and heavy objects has been developed by...

Researchers develop new robot collision avoidance algorithm

Faster and more accurate than some alternatives, this new approach could be useful for robots...

Cognex launches 3D vision system with AI

AI-powered 3D vision system offers fast deployment and more reliable inspections for...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd